George Mason University Logo

Course Lectures

MATH 213: Calculus III

Chapter 12: Vectors and the Geometry of Space

  • Lecture 1: Section 12.1 Introduction
  • Lecture 2: Section 12.2 Vectors
  • Lecture 3: Section 12.3 The Dot Product
  • Lecture 4: Section 12.4 The Cross Product
  • Lecture 5: Section 12.5 Lines and Planes

Chapter 13: Vector Functions

  • Lecture 6: Section 13.1 Vector Functions
  • Lecture 7: Section 13.2 Derivatives and Integrals
  • Lecture 8: Sections 13.2-13.4 Motion In Space
  • Lecture 9: Section 13.3 The Geometry of Motion

Chapter 14: Partial Derivatives

  • Lecture 10: Section 14.1 Functions of Two Variables
  • Lecture 11: Section 14.2 Limits and Continuity
  • Lecture 12: Section 14.3 Partial Derivatives
  • Lecture 13: Section 14.4 Tangent Planes
  • Lecture 14: Section 14.5 Chain Rule
  • Lecture 15: Section 14.6 Directional Derivatives and the Gradient
  • Lecture 16: Section 14.7 Max and Min Values
  • Lecture 17: Section 14.8 Lagrange Multipliers

Chapter 15: Multiple Integrals

  • Lecture 18: Section 15.1 Multiple Integrals
  • Lecture 19: Section 15.2 Double Integrals over general regions
  • Lecture 20: Section 15.3 Double Integrals over polar regions
  • Lecture 26: Section 15.6 Triple Integrals
  • Lecture 27: Section 15.7 Cylindrical Coordinates
  • Lecture 28: Section 15.8 Spherical Coordinates

Chapter 16: Vector Calculus

  • Lecture 21: Section 16.1 Line Vector Fields
  • Lecture 22: Section 16.2 Part A Line Integrals
  • Lecture 23: Section 16.2 Part B Line Integrals
  • Lecture 24: Section 16.4 Greens Theorem
  • Lecture 25: Section 16.3 Fundamental Theorem Line Integrals
  • ,
  • Lecture 29: Section 16.5 Curl and Divergence
  • ,
← Back to Main Page

© 2025 Sam Fairchild, Ph.D., Department of Mathematical Sciences, George Mason University